
00011010010011110001
010010011 101 1100 10
0001 101 0101 101 0
001 010

 101 000 01 001 1 01 01
1010 10 0 00 000 01 0011
01 01 1010 10 10 011 110
010 1000 01 01 111 001
0101 001 001 0111 000

The State of
Pentesting: 2020

01 1 1 00 000 00 01

00 00
Caroline Wong, Chief Strategy Officer

Vanessa Sauter, Security Strategy Analyst

Contents

About The Report …………..…………..…………..…………..…………..…………..…………..………..………………………. 1

Executive Summary …………..…………..…………..…………..…………..…………..…………..…………..………………….. 3

Finding Security Vulnerabilities: Human vs. Machine …………..…………..…………..………….….……..……….… 6

2020 Application Security Trends …………..…………..…………..…………..…………..…………………………………. 11

Conclusion …………..…………..…………..…………..…………..…………………………………………………………………… 19

Team …………..…………..…………..…………..…………..…………..…………..…………..………………………………………. 20

Appendix …………..…………..…………..…………..…………..…………..…………..……..……………………………………… 21

Key Findings …………..…………..…………..…………..…………..…………..…………..…………..………………….….. 4

The Machine Wins …………..…………..…………..…………..…………..…………..…………..…………..…………..….. 6

Here’s What We Learned …………..…………..…………..…………..…………..………………………………………….. 11

Pentest Frequency Is Up …………..…………..…………..…………..…………..…………………………………………… 14

Pentesting Is a Priority …………..…………..…………..…………..…………..……………………………………………… 16

Organizations Pentest Many Types of Apps …………..…………..…………..…………..…………..……………….. 15

AppSec Requires Security + Engineering …………..…………..…………..…………..…………..…………………… 18

The Human Wins …………..…………..…………..…………..…………..…………..…………..…………..………………. 8

Together: Human + Machine …………..…………..…………..…………..…………..…………..…………..…………… 10

Key Takeaways …………..…………..…………..…………..…………..…………..…………..…………..……………..……. 5

Blind, second-order, and out-of-band vulnerabilities …………..…………..…………..………….….……… 7

Business logic bypasses …………..…………..…………..…………..…………..…………..…………..……………. 8

Machine limitations: Set-up, triage, and context …………..…………..…………..……………….………….. 7

Race conditions …………..…………..…………..…………..…………..…………..…………..………………………… 9

Chained exploits …………..…………..…………..…………..…………..…………..…………..………………………. 9

Case Study: Insecure Direct Object Reference …………..…………..…………..…………..…………..…….. 10

About The Report
Cobalt.io is a Pentest as a Service (PtaaS) platform that connects a global pool of nearly 300

vetted, certified pentesters, known as the Cobalt Core Pentester Community, with organizations

who want to build quality security testing into their software development lifecycles. During the

last four years, we have conducted more than 2,500 pentests through our PtaaS platform.

Cobalt.io conducts pentesting across a variety of application types. This report features insights

from aggregated data derived from nearly 1,200 pentests conducted in 2019. Web applications

and web applications with APIs comprised 67 percent of Cobalt.io’s testing last year. Cloud

configuration, mobile, desktop, and isolated API testing were also covered, though in smaller

numbers, as well as internal and external network testing.

State of Pentesting 2020 1

7.6%

7.1%

6.7%

30%

37%

4.8%
3.5%

2.3%
<1%

<1% Web

API

Internal Network

Desktop

Web + API

Mobile

Web + Mobile

External Network

Web + External Network

Cloud Configuration

Application Types Tested in 2019 (Cobalt.io PtaaS Platform Data)

https://cobalt.io/platform

2State of Pentesting 2020

For the last four years, we have reported on the categories of vulnerabilities that have been

discovered by the Cobalt Core Pentester Community. This year, the following categories comprise

our top five vulnerabilities across web applications:

Although the OWASP Top 10 lists misconfiguration as number six in the top 10 web application

vulnerability types, misconfiguration tops our list for the fourth year in a row. (In The State of

Pentesting: 2019 report, we did a deep dive on the security misconfiguration vulnerability

category.)

We also analyzed survey responses from more than 100 practitioners in security, development,

operations, and product roles regarding their application security programs. Respondents span a

wide variety of industries, including information technology, healthcare, education, retail, and

finance.

Finally, this report includes insights from members of the Cobalt Core Pentester Community in

partnership with independent researchers, engineers, and other security practitioners.

The State of Pentesting: 2020 report assesses which
web application security vulnerabilities can be found

reliably using machines and which require human
expertise to manually identify.

Misconfiguration

Cross-site scripting

Authentication and sessions

Sensitive data exposure

Missing access controls

https://owasp.org/www-pdf-archive/OWASP_Top_10_2017_RC2_Final.pdf
https://resource.cobalt.io/the-state-of-pentesting-2019
https://www.darkreading.com/application-security/what-the-appsec-penetration-test-found/d/d-id/1335195

3

We assume that humans will use proxies like Burp Suite, Fiddler, or ZAP to modify HTTP requests,

modify web sessions, and crawl sites. Any tool that can, once configured, identify a class of

vulnerabilities would be considered “findable” by machines. (Note: This does not include tools like

fuzzers, where the tool assists in identifying problems but does not necessarily identify what type

of vulnerability it is, or how to practically address it.)

We hope that this report can help security and engineering teams make informed decisions

concerning their application security programs.

State of Pentesting 2020

Executive Summary
The State of Pentesting: 2020 report assesses which web application security vulnerabilities can

be found reliably using machines and which require human expertise to manually identify. The

scope of this exploration is black-box penetration testing (“humans”) against dynamic scanning

and out-of-band testing (“machines”) for web applications.

We investigate the following questions:

What vulnerability types can dynamic scanners reliably find?

What are the vulnerability types that only humans can find (i.e. dynamic scanners cannot

reliably identify them)?

What are the vulnerability types for which scanners will not automatically populate

results, but where automated tools can enhance efficiency to conduct further

exploitation?

010 10 100 10 1000
100 000 0001 01 01
100 10 100 0010 01vs

4State of Pentesting 2020

Key Findings

Humans “win” at finding the following vulnerability types: business logic bypasses, race

conditions, and chained exploits.

Although machines broadly “win” at finding most vulnerability types when applied correctly,

scanning results should be used as guideposts and analyzed contextually.

There are vulnerabilities that neither humans nor machines can independently find. Rather, they

must work together to identify these issues. Vulnerability types in this category include:

authorization flaws (like insecure direct object reference), out-of-band XML external entity

(OOB XXE) , SAML/XXE Injection, DOM-based cross-site scripting, insecure deserialization,

remote code exploitation (RCE), session management, file upload bugs, and subdomain

takeovers.

As the pace of software release hastens, so must the methodologies designed to secure

applications. More than one-third (37%) of our survey respondents release software on a
weekly or a daily cadence.

of security practitioners

release software on a

weekly or a daily cadence

37% 37%

5State of Pentesting 2020

Key Takeaways

Identifying a vulnerability is not the same as assessing the risk it presents. While scanners

can succeed in quickly finding vulnerabilities when properly directed, practitioners are

required to apply necessary context. Among the many vulnerabilities (including false

positives) you might find, the most important process is finding the true number of

vulnerabilities and remediating the most critical ones. Right now, only humans can perform

such tasks.

Good pentesters rely heavily on automation to test applications—whether writing Python
code to iterate through hundreds of subdomains or automatically fuzzing inputs. While

pentesters will automate many of their processes to maximize their own efficiency, such

automation is not synonymous with scanning. Scripts are often written to problem-solve and

make the pentesting experience faster and more rewarding. In fact, the tools that pentesters

develop and rely on to conduct security assessments reflect human creativity, persistence,

and out-of-the-box thinking.

Scanners can only be as effective as the practitioners who deploy them. Open-source and

enterprise scanners serve as an excellent baseline to reliably identify simpler classes of

vulnerabilities. When configured correctly, they can save a tremendous amount of time. All

application security programs, no matter how scrappy or robust, should use static and

dynamic testing. Scanners, however, are not a substitute for comprehensive application

security measures, nor can they replace pentesting.

6State of Pentesting 2020

To date, relatively little research has been published on the classes of vulnerabilities that machines

and humans respectively excel at finding. Yet the distinction between machine-found and human-

found vulnerabilities can greatly impact a security team’s application security strategy, particularly

with respect to allocating time and resources to the most effective find-and-fix activities.

Finding Security Vulnerabilities:
Human vs. Machine

The Machine Wins

Vulnerability types that can reliably be found by machines include: XSS (self, stored, and

reflected), SQL injections (including blind and second-order), server-side request forgery (SSRF),

cross-site request forgery (CSRF), sensitive information disclosure (path traversal, application

errors, directory listing), missing or broken authentication, security headers (clickjacking/UI

redressing), components with known vulnerabilities, local and remote file inclusion, cookie

attributes, SSL/TLS-related issues, OS command injection, XXE, and cross-origin resource sharing

(CORS)-related issues. Although machines broadly “win” at finding many vulnerability types,

scanning results should be used as guideposts and analyzed contextually.

Dynamic scanners work by injecting malicious

payloads. They test access points when they are

communicating with the front-end. Scanners are

programmed to understand arguments and

function calls and can detect vulns in headers,

verbs, fragments, and DOM. They can also identify

some misconfigurations and find components with

known vulns.

7State of Pentesting 2020

Of course, scanners still require manual set-up and produce a significant number of false

positives, so a human must configure any scanner and sift through results. Dynamic and out-of-

band testing machines only search for what they’re directed to look for, which means that any

error in the discovery and reconnaissance phase of a web application pentest may result in an

absence of scanning results for the overlooked subdomains, input fields, code, etc.

MACHINE LIMITATIONS: SET-UP, TRIAGE, AND CONTEXT

When we talked with the Cobalt Core Community Pentesters about which vulnerabilities they find

using machines, one of the more controversial issues was whether scanners could reliably find

trickier issues like second order or blind vulnerabilities. A standard XSS or SQLi attack, for

instance, produces an immediate result—like an alert prompt that says “Hello World!”, data spilled

into an input field, or an interesting error message. When you see that, you can immediately

recognize the success of a payload. But what happens when a payload is successfully injected but

the output isn’t obviously visible?

A vulnerability is referred to as “blind” if the request or response is obfuscated in some way,

making it difficult (or impossible) to interpret. A vulnerability is referred to as “out-of-band” if the

response does not return within the same interface through which the attack was sent.

When it comes to blind or out-of-band vulnerabilities, the output won’t be visible immediately. This

is because an application may activate the payload at a later point in time, thus requiring

pentesters to have back-end knowledge of the system to know if the payload was successful.

When properly configured (by a human), machines are able to identify blind, second-order, or

otherwise out-of-band vulnerabilities.

BLIND, SECOND-ORDER, AND OUT-OF-BAND VULNERABILITIES

While scanners can guess the criticality of a vulnerability, it cannot

properly assess the severity within the context of an application, nor

can scanners indicate the possibility of a chained exploit.

https://portswigger.net/burp/application-security-testing/oast

8State of Pentesting 2020

Examples of business logic attacks include:

Successfully modifying the price of goods or services purchased

Abusing weak password recovery validation

Evading approval flows

Since business logic attacks are context-driven and exploit legitimate processes, business logic

vulnerabilities elude scanners. Scanners are not capable of manipulating business logic rules or

identifying misuse of an execution flow. The ability to identify this class of vulnerability requires a

complete understanding of the web application and necessitates creative thinking. Business logic

vulnerabilities are also difficult to identify through incident monitoring and intrusion detection

systems.

Business logic vulnerabilities stem from weak design. Poor documentation of execution flows, lack

of understanding of the technologies deployed, and an absence of manual testing will increase the

risk of these vulnerabilities. The increasing complexity of web applications subsequently

introduces greater risk for business logic vulnerabilities. Compounded by insufficient security

monitoring and other practices (like mandatory vacation for arbitrage traders), business logic

bypasses can have serious consequences.

To address and prevent these types of vulnerabilities, structural changes are required.

Frameworks should be used consistently, the deployed technology stack must be well understood,

and new vulnerabilities should be carefully assessed. Threat modeling and manual pentesting are

essential to finding and mitigating business logic vulnerabilities.

Business logic vulnerabilities exploit flaws in an application’s design. An attacker may be able to

circumvent the anticipated workflow or alter a web application’s execution path. While most web

application vulnerabilities result from a misconfiguration or absence of security controls, business

logic attacks misuse an application’s unique business rules.

Humans “win” at finding business logic bypasses, race conditions, and chained exploits.

BUSINESS LOGIC BYPASSES

The Human Wins

https://owasp.org/www-community/vulnerabilities/Business_logic_vulnerability
https://www.theatlantic.com/business/archive/2012/11/meet-the-most-indebted-man-in-the-world/264413/
https://media.blackhat.com/ad-12/Siddharth/bh-ad-12-Exploiting-Logical-Flaws-Siddharth-Slides.pdf

9State of Pentesting 2020

Vulnerabilities can be chained to produce more severe vulnerabilities. “Low-hanging fruit” bugs

that seem low-risk independent of each other can introduce new pathways for exploitation when

chained to other vulnerabilities.

Informational or low-level vulnerabilities—the kind that a scanner can easily identify—can be an

entry-point or hinge to more sophisticated attacks. Chained exploits rely on an attacker’s creativity

and attention to detail. These attacks are contextual and depend on a clear understanding of an

application’s functionality. They may even require exploitation of multiple frameworks. Neither a

scanner nor some other kind of automated tool is able to effectively connect multiple

vulnerabilities together in the same way that a human can.

There is no simple solution to preventing chained exploits. Instead, existing vulnerabilities must be

mitigated and security measures must be improved across the application.

CHAINED EXPLOITS

Race conditions are a subset of application logic attacks. They occur when two threads attempt to

access the same data at the same time and both attempt to change it. Race conditions are often

produced by failing to lock a file, meaning there’s a race when a file is opened and not locked by

the process. They can also arise when an application does not store information on a per-session

or per-thread basis, and instead uses static storage. This type of vulnerability occurs for a brief

period of time and must be triggered by specific circumstances. This means that there is a short

window in which an attacker must “race” to exploit the vulnerability.

Login functions, password changes, and fund transfers are examples of application processes that

are susceptible to race conditions.

It can be particularly challenging and time-intensive to identify race conditions when conducting

black-box penetration testing, but these vulnerabilities are almost always critical when discovered.

Race conditions can be reliably found using source-code review and static application security

testing. However, dynamic scanners cannot reliably detect race conditions. A pentester would

likely need to conduct fuzzing in order to identify race conditions, but for the purpose of this

report, we consider fuzzing out of the scope for machines to “win.” A pentester must first identify

the possibility of a race condition before it can be tested, at which point automated tools can be

deployed.

RACE CONDITIONS

https://archive.org/details/TheWebApplicationHackersHandbook2ndEdition/page/n461/mode/2up

10State of Pentesting 2020

IDORs are produced when a user achieves unvalidated access to an object through their supplied

input. An example would be modifying the URL parameters to access content, such as another

person’s account, by changing the input. Another example of IDOR is an attacker modifying a

user’s input through their id, pid, or uid that can be found in HTTP requests.

IDOR vulnerabilities can range from low-level or informational bugs (such as accessing or editing

personal information like a person’s name) to high severity (such as accessing and/or deleting

sensitive information like credit card numbers or medical records). This type of vulnerability falls

into the category of broken access control flaws.

Vulnerability scanners will not always find IDOR vulnerabilities. Instead, a pentester must first

identify the object reference and then use an automated tool (like Burp) to tailor the payload.

Then, the automated tool can start the attack by sending thousands of iterations. Attackers can

take other actions from there, like enumerating accounts.

There are multiple ways to prevent IDOR vulnerabilities. In principle, direct object references

should not be exposed. Hashed values, or another value that is difficult to predict, should be used

instead of normal strings or values. For example, www.bigimportantbank.com/user.php?id=99013

should be replaced with a hashed value like www.bigimportantbank.com/user.php?

id=744878!dd26871c594f57ca61733e09. Logical access controls should also be defined and

enforced to prevent users from accessing restricted objects or acting in unintended ways.

CASE STUDY: INSECURE DIRECT OBJECT REFERENCE

Finally, there are vulnerabilities that neither humans nor machines can independently find.

Scanners cannot reliably find them or they may require intensive manual configuration. Humans,

however, must rely on automated tools to successfully execute these exploits.

Vulnerability types in this category include: authorization flaws (like IDOR), OOB XXE, SAML/XXE

Injection, DOM-based XSS, insecure deserialization, RCE, session management, and file upload

bugs. In these cases, humans and machines must work together to exploit these vulnerabilities.

Together: Human + Machine

https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://portswigger.net/support/using-burp-to-test-for-insecure-direct-object-references
http://www.bigimportantbank.com/user.php?id=99013
http://www.bigimportantbank.com/user.php?id=744878fbdd26871c594f57ca61733e09
http://www.bigimportantbank.com/user.php?id=744878fbdd26871c594f57ca61733e09

11State of Pentesting 2020

In addition to evaluating nearly 1,200 pentests conducted in 2019 and assessing the relative

capability of machines and humans to find different kinds of web application security

vulnerabilities, we also analyzed survey responses from more than 100 practitioners in security,

development, operations, and product roles regarding their application security programs.

Respondents span a wide variety of industries, including information technology, healthcare,

education, retail, and finance.

2020 Application Security Trends

52%
indicate that their organization pentests
applications at least quarterly, while only
16% pentest annually or bi-annually.

Here’s What We Learned:

54%
of organizations use an agile software
development methodology, and 30%

characterize their methodology as DevOps,
compared to just 5% doing waterfall.

AGILEAGILE

12State of Pentesting 2020

AGILEAGILE

Organizations pentest many different types of
applications. Web application pentesting

continues to be most popular, while API, cloud,
and mobile testing follow.

Almost three-quarters (71%) also said that
they rely on cloud environments like Amazon

Web Services or Microsoft Azure.

Cloud environments continue to present
significant risk, particularly with respect to
security misconfiguration. More than half (51%)
of survey respondents conduct pentesting on
Amazon-based cloud environments alone.

25%
of organizations release software on a daily
basis; 12% release software weekly; 22% release
software monthly; and 13% release software
quarterly. Only 1% of respondents reported that
their organizations release software annually.

13State of Pentesting 2020

Many organizations are making the transition
from DevOps to DevSecOps and embracing
an “everyone is a part of the security team”
approach to security.

The majority of respondents (78%)
reported a strong relationship between

security and engineering, and we expect
that to continue to grow in the future.

14State of Pentesting 2020

There is a significant uptick in the frequency of pentests. In 2019, 67% of respondents said they

conducted pentests annually or semi-annually. In 2020, respondents are conducting pentests on a

much more frequent cadence, with 52% indicating they pentest applications at least quarterly,
while only 26% pentest annually or bi-annually.

Pentest Frequency Is Up

How frequently does your organization conduct Pentesting/
Penetration testing? Please select the answer that fits best.

15State of Pentesting 2020

Which of the following types of applications in your
portfolio do you conduct pentesting/penetration

testing for? Please select all that apply.

Organizations Pentest Many Types of Apps

Web application pentesting continues to be most popular, while API, cloud, and mobile
testing follow. This matches Cobalt’s pentest platform data, where web applications and web

applications with APIs comprised 67% of Cobalt’s testing in 2019. Yet the increase in API and

cloud environment testing is unsurprising given an increase in microservices and APIs.

Cloud environments continue to present significant risk, particularly with respect to
security misconfiguration. We continue to see more cloud testing as web applications increasingly

rely on cloud servers.

16State of Pentesting 2020

Pentesting Is a Priority

How big of a priority is pentesting
for your security team today?

Given that more than three-quarters (78%) of respondents conduct pentesting to improve
their application security posture, it’s unsurprising that pentesting is viewed as a high priority.
Compliance continues to be a significant driver for pentesting, as well as procurement

requirements and third-party vendor assessments.

17State of Pentesting 2020

What percentage of your organization’s entire application
portfolio do you conduct pentesting/penetration testing for?

Although there is general agreement that pentesting is a priority for organizations, the
percentage of tested applications varies widely. Given the cost and overhead of traditional

pentesting, many organizations are forced to choose which applications to test and which ones to

neglect. Compliance requirements, risk, and business continuity considerations all play a role in

the number of applications tested. Given the variety of different industries represented in the

survey, it also makes sense that the number of tested applications varies.

18State of Pentesting 2020

How would you rate the quality of relationship
between security and engineering?

AppSec Requires Security + Engineering

A healthy relationship between security and engineering is essential to application
security. Many organizations are making the transition from DevOps to DevSecOps and embracing

the “everyone is a part of the security team” approach to security. With this transition, of course,

comes small roadblocks. It is reassuring to see that the majority of respondents are confident in

the relationship between security and engineering, and we expect that to continue to grow in the

future.

19State of Pentesting 2020

The global application security market has risen to meet the demand. Analysts predict this market

will reach $9.64 billion by the end of 2023, achieving an annual compound growth rate of nearly

25%. Today, there are thousands of companies tackling application security.

As web applications continue to proliferate and

the technology stacks evolve, application

security engineers and pentesters alike must

adapt quickly. The goal, from a defender’s

perspective, is to reduce the technical acumen

and time required to find and fix a web

application’s vulnerabilities. With greater

integration of DevSecOps, we hope to see a

reduction over time in trivial vulnerabilities.

Scanners, which we refer to colloquially as

machines, excel at finding specific classes of

vulnerabilities, while humans are better able to

find other classes. The benefits of pentesting

are maximized when low-hanging fruit, like

simple SQL injections, cross-site scripting

a t t a c k s , o r c o m p o n e n t s w i t h k n o w n

vulnerabilities, are addressed earlier in the

DevOps cycle using automated tools. This frees

up time for skilled pentesters to identify trickier

and more critical vulnerabilities.

vulnerabilities, while humans are better able to find other classes. The benefits of pentesting are

maximized when low-hanging fruit, like simple SQL injections, cross-site scripting attacks, or

components with known vulnerabilities, are addressed earlier in the DevOps cycle using

automated tools. This frees up time for skilled pentesters to identify trickier and more critical

vulnerabilities.

The question of manual versus automated testing is now a question of ascertaining value in a

results-driven market. It’s become part of the strategy for choosing vendors, allocating resources,

and determining the best use for the information security industry’s greatest scarcity:time. If you

take anything away from this report, it should be the unique value that machines and humans bring

to the table. We hope this report helps you think strategically about how you invest your limited

application security budget.

Conclusion

https://www.globenewswire.com/news-release/2019/04/30/1812681/0/en/Application-Security-Market-Estimated-to-Grow-up-to-USD-9-64-Billion-by-the-end-of-2023-at-24-95-CAGR-Application-Security-Market-Forecast-by-Solution-Service-Testing-Deployment-Or.html

20State of Pentesting 2020

Team

AUTHORS

PRODUCTION

SPECIAL THANKS TO:

Christina Schultz, Director of Marketing Communications

Travis McComarck, Technical Program Manager

Julie Kuhrt, Marketing Content Manager

The Cobalt Core Pentester Community

Caroline Wong
Chief Strategy Officer

Vanessa Sauter
Security Strategy Analyst

21State of Pentesting 2020

Web Application Security Testing Methodology and Tools

Vulnerability Management

Integrating Testing into the CI/CD Pipeline

Deploying Web Application Scanners

Appendix

“OWASP Web Security Testing Guide, Version 4.1,” OWASP,

https://owasp.org/www-project-web-security-testing-guide/v41/.

“Building an Application Vulnerability Management Program,” Jason Pubal, SANS Institute, July

23, 2014, https://www.sans.org/reading-room/whitepapers/application/building%20-

application-vulnerability-management-program-35297.

“DevSecOps: What, Why, and How?” Anant Shrivastava, BlackHat USA 2019,

https://i.blackhat.com/USA-19/Thursday/us-19-Shrivastava-DevSecOps-What-Why-And-

How.pdf.

“Evaluation of Web Application Vulnerability Scanners in Modern Pentest/SSDLC Usage

Scenarios,” Shay Chen, Security Tools Benchmarking, November 17, 2020,

http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.html.

“The Web Application Hackers Handbook, 2nd Edition,” Dafydd Stuttard and Marcus Pinto,

2011, https://archive.org/details/TheWebApplicationHackersHandbook2ndEdition/page/n2/

mode/2up.

“The Burp Methodology,” PortSwigger Web Security,

https://portswigger.net/support/the-burp-methodology.

https://owasp.org/www-project-web-security-testing-guide/v41/
https://archive.org/details/TheWebApplicationHackersHandbook2ndEdition/page/n2/mode/2up
https://portswigger.net/support/the-burp-methodology
https://www.sans.org/reading-room/whitepapers/application/building%20-application-vulnerability-management-program-35297
https://i.blackhat.com/USA-19/Thursday/us-19-Shrivastava-DevSecOps-What-Why-And-How.pdf
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.html

22State of Pentesting 2020

Race Conditions

Chained Exploits

“CAPEC-29: Leveraging Time-of-Check and Time-of-Use Race Conditions,” MITRE, September

30, 2019, https://capec.mitre.org/data/definitions/29.html.

“Application Bug Chaining,” Mark Piper, OWASP, July 2009,

https://www.owasp.org/images/5/55/Application-Bug-Chaining-Live.pdf.

Business Logic Flaws

“How to Prevent Business Flaws in Web Applications,” Marco Morana, OWASP, January 2011,

https://owasp.org/www-pdf-archive/OWASP_Cincinnati_Jan_2011.pdf.

https://owasp.org/www-pdf-archive/OWASP_Cincinnati_Jan_2011.pdf
https://capec.mitre.org/data/definitions/29.html
https://www.owasp.org/images/5/55/Application-Bug-Chaining-Live.pdf

00011010010011110001
010010011 101 1100 10
0001 101 0101 1010

0001010
0001 101
1100 10 0001 101 000
00 0 1 01 01 10 00 110
01 01 01 01 01 0000 000
0100111100010100011
101 1100 10 0001 101
0101 1010 00 00 0 1 01
01 10 00 110 01 01 01 01
01 0000 001 001101 0 0
01 0

